Collocation software for second-order elliptic partial differential equations
نویسندگان
چکیده
منابع مشابه
Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations
In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.
متن کاملDiv First-Order System LL* (FOSLL*) for Second-Order Elliptic Partial Differential Equations
The first-order system LL* (FOSLL*) approach for general second-order elliptic partial differential equations was proposed and analyzed in [Z. Cai et al., SIAM J. Numer. Anal., 39 (2001), pp. 1418–1445], in order to retain the full efficiency of the L2 norm first-order system leastsquares (FOSLS) approach while exhibiting the generality of the inverse-norm FOSLS approach. The FOSLL* approach of...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملA least-squares method for second order noncoercive elliptic partial differential equations
In this paper, we consider a least-squares method proposed by Bramble, Lazarov and Pasciak (1998) which can be thought of as a stabilized Galerkin method for noncoercive problems with unique solutions. We modify their method by weakening the strength of the stabilization terms and present various new error estimates. The modified method has all the desirable properties of the original method; i...
متن کاملNew Bounds for Solutions of Second Order Elliptic Partial Differential Equations
1. Introduction In a previous paper [10] the authors presented methods for determining, with arbitrary and known accuracy, the Dirichlet integral and the value at a point of a solution of Laplace's equation. These methods have the advantage that upper and lower bounds are computed simultaneously. Moreover all error estimates are in terms of quadratic functionals of an arbitrary function, so tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Mathematical Software
سال: 1985
ISSN: 0098-3500,1557-7295
DOI: 10.1145/6187.6191